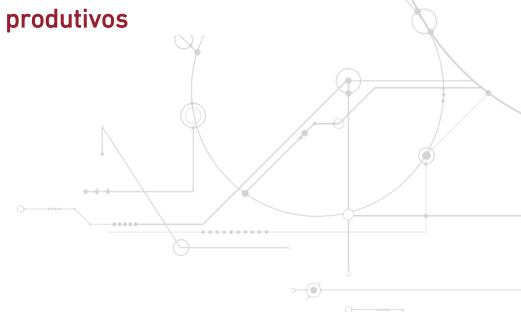


MAIS DE 35 ANOS A CONVERTER CONHECIMENTO EM VALOR


Análise de viabilidade de implementação de processos de reciclagem de painéis fotovoltaicos e reutilização de materiais resultantes em novos processos produtivos

2022

VIVIANA CORREIA PINTO Responsável do Grupo de Economia Circular Unidade de Gestão e Engenharia Industrial, INEGI

AGENDA

- 1. ENQUADRAMENTO
- 2. ANÁLISE DE VIABILIDADE DE IMPLEMENTAÇÃO DE PROCESSOS DE RECICLAGEM DE PAINÉIS FOTOVOLTAICOS
 - a) Análise técnico-económica
 - b) Comparação de cenários técnico-económicos
 - c) Análise ambiental
 - d) Comparação de cenários ambientais
- 3. ANÁLISE DE REUTILIZAÇÃO E INCORPORAÇÃO DE MATERIAIS RESULTANTES DA RECICLAGEM
- 4. NOTAS FINAIS

1. ENQUADRAMENTO

© INEGI todos os direitos reservados

MERCADO ATUAL DOS PAINÉIS FOTOVOLTAICOS (PF)^{1,2}

139 GWdc

PF foram instalados e comissionados em 2020

760 GWdc

Capacidade cumulativa global dos PF em 2020

877 Mton CO₂ evitado

Contribuição para descarbonização energética (2020)

718 MW

Aumento de capacidade em PT em 2022 (face a 2021)

1 801 MW

Energia solar instalada em Portugal em 2021

60 a 78 Mton

de resíduos de PF até 2050 (estimativa)

Central de Alcoutim tem potência de 219 MW e cerca de 661.500 painéis instalados (a operar desde 2021)³

⁽¹⁾ Fonte: IEA Photovoltaic Power Systems Programme (IEA PVPS) - Technology Collaboration Programme (TCP) da International Energy Agency (IEA) 2020 Snapshot of Global PV Markets

⁽²⁾ Fonte: DGEG (2013-2022)

⁽³⁾ Fonte: https://www.sulinformacao.pt/2021/10/maior-central-fotovoltaica-do-pais-e-inaugurada-amanha-em-alcoutim/

MERCADO ATUAL DOS PAINÉIS FOTOVOLTAICOS (PF) 1

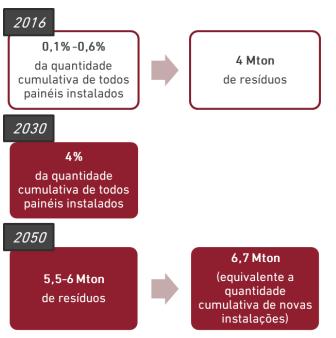
DESCOMISSIONAMENTO

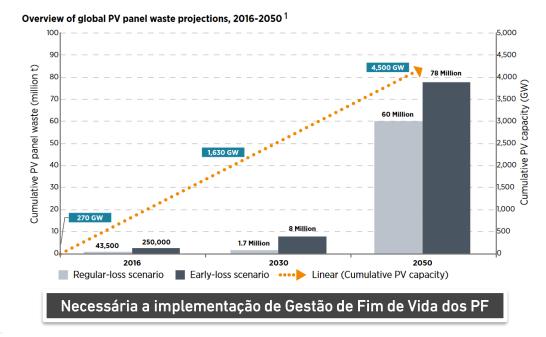
REPOTENCIAÇÃO

RECICLAGEM

- Nem o descomissionamento nem a repotenciação são corretamente rastreados.
- O descomissionamento real é relativamente incomum, dada a idade das instalações mais antigas.
- A substituição de componentes e dos módulos fotovoltaicos fazem parte da manutenção e operação normais do negócio, mas em geral não impacta a capacidade cumulativa total.
- Procedimentos de reciclagem não são comuns ainda, e a disponibilidade de dados ainda deve ser melhorada.

⁽¹⁾ Fonte: IEA Photovoltaic Power Systems Programme (IEA PVPS) - Technology Collaboration Programme (TCP) da International Energy Agency (IEA) 2020 Snapshot of Global PV Markets





GESTÃO DE FIM-DE-VIDA DOS PAINÉIS FOTOVOLTAICOS (PF)1

A crescente exploração dos Painéis Fotovoltaicos levará à indesejável **acumulação global dos respetivos resíduos**

GESTÃO DE FIM-DE-VIDA DOS PAINÉIS FOTOVOLTAICOS (PF)1

Potencial de criação de valor associado à implementação de Gestão de Fim de Vida

Reutilização

Criação de um mercado secundário robusto para componentes de painel e materiais:

- PF podem ser revendidos no mercado mundial a um preço de mercado reduzido.
- PF ou componentes parcialmente reparados podem encontrar compradores dispostos ao mercado de segunda mão - compradores em países com recursos financeiros limitados e que ainda se queiram envolver no setor solar fotovoltaico.

Reciclagem

Recicladores de PF tratarão do desmantelamento e separação dos componentes nas suas instalações, permitindo a recuperação do material dos principais componentes. Painéis c-Si podem ser recuperados em mais de 85% da massa total do PF.

A longo prazo, os recicladores terão instalações de reciclagem dedicadas aos PF, aumentando a capacidade de tratamento e separação, maximizando a qualidade de saída e a capacidade de recuperar uma maior fração de materiais incorporados.

PROJETO E-CYCLE | INEGI

Viabilidade de implementação de processos de reciclagem de painéis fotovoltaicos e reutilização de materiais resultantes em novos processos produtivos

Objetivo:

 Analisar e avaliar o grau de exequibilidade da instalação e implementação de uma linha de produção direcionada ao desmantelamento e reciclagem de PF com consequente recuperação dos materiais presentes na sua composição

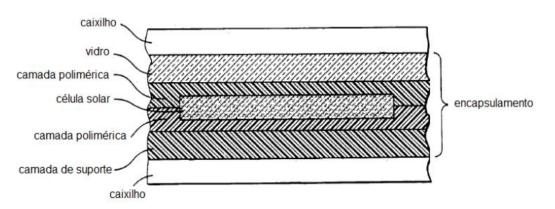
Avaliação de subprocessos baseados nas propostas elaboradas pelo estudo anteriormente efetuado pela Universidade de Aveiro (2021), a utilizar para o desmantelamento de um PF e recuperação dos materiais que o compõem

2.

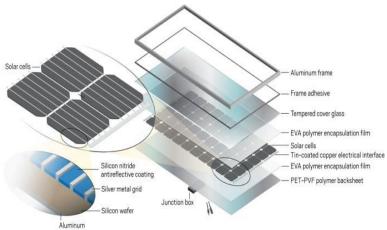
ANÁLISE DE VIABILIDADE DE IMPLEMENTAÇÃO DE PROCESSOS DE RECICLAGEM DE PAINÉIS FOTOVOLTAICOS

- Análise técnico-económica
- Comparação de cenários técnicoeconómicos
- Análise ambiental
- Comparação de cenários ambientais

Since 1986


ESTRUTURA DO PAINEL FOTOVOLTAICO (PF)

PF de silício cristalino:


Número de células: 60;

Dimensões: 1.000 x 1.650 x 50 [mm];

Peso: 18 – 20 [kg]

Fonte: J. R. Bohland, I. I. Anisimov, "Recycling silicon photovoltaic modules," US 6063995, 2000

Fonte: G.A. Heath, T.J.Silverman, M. Kempe, et al. "Research and development priorities for silicon photovoltaic module recycling to support a circular economy". Nat Energy, 5, 502–510, 2020

ESTRUTURA DO PAINEL FOTOVOLTAICO (PF)

Materiais recuperados e respetivos pesos e densidades passíveis de recuperar por painel fotovoltaico (PF) de 18 kg

Material	Peso considerado¹ [kg]	Peso calculado para 1 PF [kg]	Peso calculado para 1 PF [%]	Densidade [g/cm3]
Pesototal	1.000,00	18,00		
Caixilho de Alumínio	180,00	3,24	18,00	-
Vidro	700,00	12,60	70,00	2,33
EVA (acetato-vinilo de etileno)	51,00	0,92	5,10	0,95
Célula solar / silício	36,50	0,66	3,65	2,33
Tedlar	15,00	0,27	1,50	1,55
Cabos	10,00	0,18	1,00	-
Condutor interno - alumínio	5,30	0,10	0,53	2,70
Condutor interno - cobre	1,14	0,02	0,11	8,96
Prata	0,53	0,01	0,05	10,50
Outros metais (estanho, chumbo)	0,53	0,01	0,05	-
Peso total dos cabos	3,37E-03	0,18		
Bainhaexterior	1,19E-03	0,06		
Bainhainterior	5,46E-04	0,03		
Metal condutor	1,63E-03	0,09		

⁽¹⁾ Fonte: João Labrincha, Paula Seabra, Rui Novais, André Capitão. Relatório final do Projeto WEEECYCLE. s.l., Universidade de Aveiro, 2020

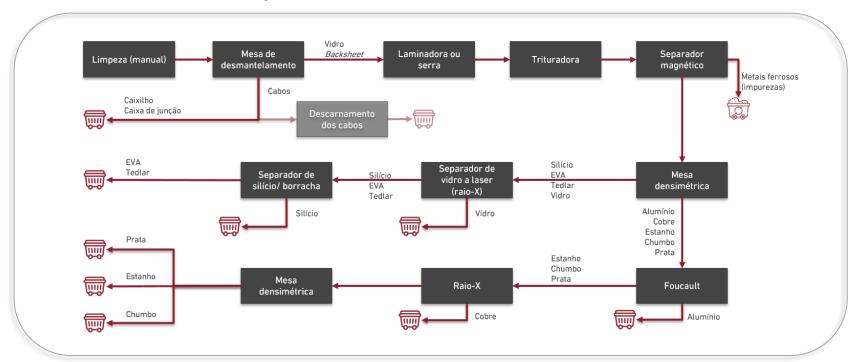
Propostas analisadas

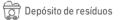
*por magnetismo, correntes de *Foucault*, flutuação, raio-X, câmara de cor, densimetria, injeção de ar, ou outras adequadas

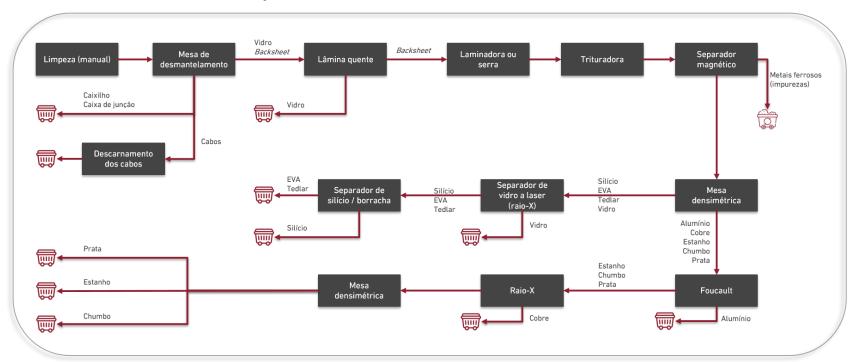
Considerações técnicas

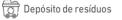
1. Etapa prévia de limpeza: limpeza simplificada do painel, com foco na eliminação de impurezas à superfície que possam danificar, nomeadamente riscar, e assim influenciar negativamente a posterior e eventual reutilização do vidro temperado.

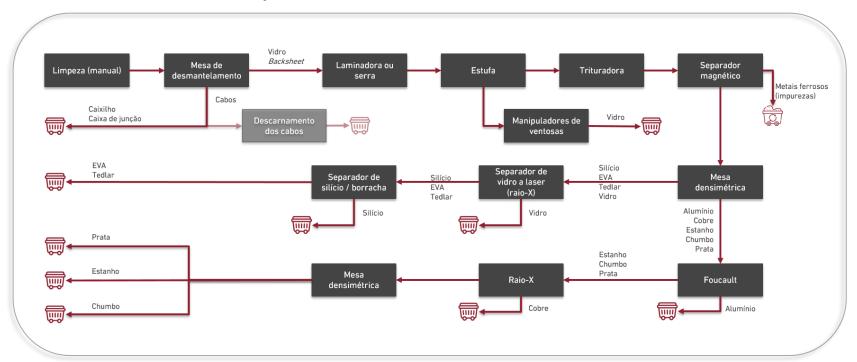
Não existindo trituração ou destruição do vidro temperado será necessário um cuidado extra na conservação do seu estado, para que este possa ser submetido a novos processos de recuperação ou reciclagem.

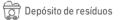

2. Ciclo térmico para descolamento do vidro e do EVA:

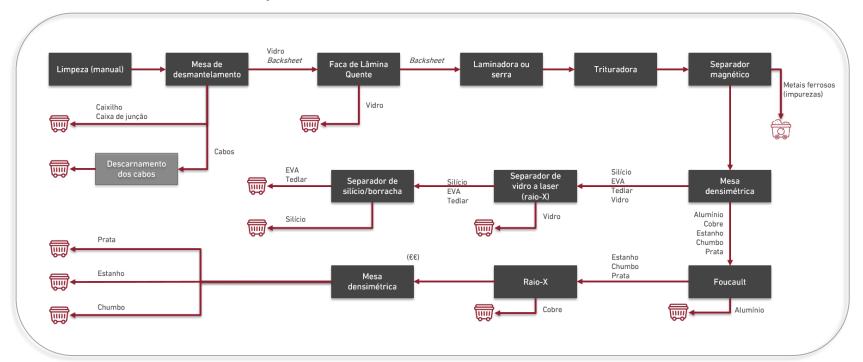

- Temperatura de fusão do EVA: entre 72° C e 102° C Temperatura máxima e de manutenção do ciclo térmico: 68° C.
- Verifica-se fusão ao fim de dois minutos sujeito ao intervalo de temperaturas mencionado e homogeneização ao fim de dez minutos nas mesmas condições.
- Duração total do ciclo térmico: 60 (sessenta) minutos.
- Ciclo térmico (proposta nº4) para facilitar o corte por fio quente para a remoção do vidro temperado não é necessário e por isso não foi incluída.

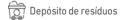












Subprocesso	Desmantelamento	
Equipamento	Mesa de desmantelamento	
Marca	NPC Incorporated	
Características do equipamento	 Potência: 36 kW; Capacidade de produção: 1 painel a cada 40 segundos; Tensão elétrica: 200 V; Carga e processamento de uma unidade de cada vez. 	
Investimento¹ (€)	108 500	

Fonte: Imagem submetida a direitos de autor pela NPC Incorporated

Subprocesso	Descarnamento de cabos	
Equipamento	A. Equipamento semiautomático de descarnamento dos cabos	B. Linha automática de descarnamento e separação dos cabos
Características do equipamento	 Potência: 2,2 kW; Capacidade de produção: não especificada; Tensão elétrica: 220 V / 230 V; Intervalo de diâmetros admissível: 0 – 45 [mm] 	 Potência: 37 kW; Capacidade de produção: 100 – 1000 kg/h; Tensão elétrica: 110 V / 220 V / 380 V; Intervalo de diâmetros admissível: 0,1 – 30 [mm]
Investimento¹ (€)	600	7.000

Fonte: Imagem retirada do website Alibaba

Fonte: Imagem retirada do website Alibaba

Subprocesso	Laminagem /Corte	
Equipamento	Equipamento de laminagem / corte	
Características do equipamento	 Potência: 37 kW; Capacidade de produção: não especificada; Tensão elétrica: 380 V ou customizada; Corrente elétrica: 100 A; Necessita de um tempo de aquecimento de 5 a 25 minutos. 	
Investimento¹ (€)	6.900 – 14.700	

Subprocesso	Trituração	
Equipamento	Equipamento de trituração	
Características do equipamento	 Potência: 18,5 kW; Capacidade de produção: 500 – 10 000 kg / h; Tensão elétrica: 380 V. 	
Investimento¹ (€)	11.700	

Fonte: Imagem retirada do website Alibaba

Subprocesso	Separação por Raios-X	
Equipamento	A. Equipamento por Raios-X para separação de vidro temperado e polímeros	B. Equipamento por Raios-X para separação de metais
Marca	Tomra (Autosort Laser)	Tomra (Combisense)
Características do equipamento	-	-
Investimento¹ (€)	600	7.000

Fonte: Imagens retiradas do website da Tomra

Subprocesso	Separação magnética	
Equipamento	A. equipamento em linha	B. equipamento suspenso
Características do equipamento	 Potência: 4 kW; Capacidade de produção: 120 – 190 m3/h; Tensão elétrica: de acordo com a instalação; Dimensões do material de input: 0 – 3 [mm]. 	 Potência: N/A; Capacidade de produção: 1 – 20 t/h; Tensão elétrica: N/A; Velocidade do tapete: 4,5 m/s.
Investimento¹ (€)	10.000 – 60.000	2.000

Fonte: Imagem retirada do website Alibaba

Fonte: Imagem retirada do website Alibaba

Subprocesso	Separação por correntes de <i>Foucault</i>	
Equipamento	Equipamento de separação de metais por correntes <i>Foucault</i>	
Características do equipamento	 Potência: 5 – 18 kW; Capacidade de produção: 2 – 20 m3/h; 	
Investimento¹ (€)	15.000 – 50.000	

Fonte: Imagem retirada do website Alibaba

Subprocesso	Corte a quente	
Equipamento	A. Linha de desmantelamento e corte a quente	B. Lâmina / faca quente
Características do equipamento	 Potência: 115,20 kW; Capacidade de produção: 1 painel a cada 60 segundos; Carga de uma unidade de cada vez; Tensão elétrica: 200 V. 	 Potência: N/A; Capacidade de produção: N/A; Tensão elétrica: N/A; Espessura máxima de corte: 330 mm.
Investimento¹ (€)	1.012.200	800

Fonte: Imagem submetida a direitos de autor pela Brico Butikk

Subprocesso	Separação de semi-metais	
Equipamento	Linha de separação de silício e borracha de sílica dos restantes não metais resultantes do processo	
Características do equipamento	 Potência: 102 kW – 194 kW; Capacidade de produção: 200 kg – 1 000 kg; Tensão elétrica: 220 V / 380 V / customizada. 	
Investimento¹ (€)	5.000 - 65.000	

Fonte: Imagem retirada do site Alibaba

Subprocesso	Separação densimétrica
Equipamento	Equipamento de separação de metais
Marca	Stokkermill
Características do equipamento	- (não cedida pelos fornecedores)
Investimento¹ (€)	- (não cedida pelos fornecedores)

Fonte: Imagem submetida a direitos de autor pela Stokkermill

A utilização desta técnica está prevista em dois momentos: imediatamente após a separação magnética, separando metais de não metais, e no fim do processo de separação, separando e isolando prata, estanho e chumbo

Subprocesso	Ciclo térmico	
Equipamento	A. Estufa proposta pela Paralab	B. Câmara térmica proposta pela Concessus, Memmert
Características do equipamento	 Potência: 3,6 kW; Capacidade de produção: 1 000 kg / h; Tensão elétrica: 400 V; Tempo de ciclo: 60 minutos. 	 Potência: 50 kW; Capacidade de produção: 8 000 kg / h; Tensão elétrica: 400 V; Tempo de ciclo: 60 minutos.
Investimento¹ (€)	11.500	196.000

Fonte: Imagem submetida a direitos de autor pela Paralab

Fonte: Imagem submetida a direitos de autor pela Memmert

Subprocesso	Descolamento do vidro	
Equipamento	A. Pinças/garras	B. Braço pneumático para elevação com ventosas
Características do equipamento	Capacidade: 1 000 kg;Peso pretendido: 20 kg.	Capacidade: 300 kg;Peso pretendido: 20 kg.
Investimento¹ (€)	600	8.000

Fonte: Imagem retirada do site Alibaba

Subprocesso	Condução de materiais		
Equipamento	A. Transportador de tapete	B. Transportador de tapete customizado	
Características do equipamento	 Potência: 1,5 kW; Capacidade de produção: N/A; Tensão elétrica: 220 V / 380 V; Capacidade de carga: 50 – 100 kg/m; Velocidade: 0,83 m/s. 	 Potência: 0,4 - 22 kW; Capacidade de produção: N/A; Tensão elétrica: 220 V / 380 V; Capacidade de carga: não especificada; Velocidade: 0,42 m/s. 	
Investimento¹ (€)	380 €/m	200 €/m	

Fonte: Imagem retirada do site Alibaba

Fonte: Imagem retirada do site Alibaba

CAPACIDADE PRODUTIVA DOS EQUIPAMENTOS

Equipamento	Materiais separados	Potência	Capacidade de produção
Mesa de desmantelamento	Caixilho Caixa de junção Cabos elétricos	36 kW	1 painel / 40 s
Descarnados de cabos	Cobre Revestimentos	2.2 kW	1 Cabo / 4 s (600 - 1200 kg / h)
Descarnador de cabos - linha	Cobre Revestimentos	37 kW	100 – 1 000 kg / h
Laminadora	Corte em frações	24 kW	26 m³ / h
Trituradora	Trituração em grão	18,5 kW	500 – 10 000 kg / h
Raio-X (vidro)	Vidro Polímeros	10 kW	500 kg / h
Separador magnético de linha	Ferrosos (impurezas ferrosas)	4 kW	120 – 190 m³ / h
Separador magnético suspenso	Ferrosos (impurezas ferrosas)	N/A	1 000 – 20 000 kg /h
Correntes de <i>Foucault</i>	Alumínio Cobre	5 - 18 kW	2 – 20 m³ / h

CAPACIDADE PRODUTIVA DOS EQUIPAMENTOS (2)

Equipamento	Materiais separados	Potência	Capacidade de produção
Mesa de desmantelamento com corte a quente	Caixilho Caixa de junção Cabos elétricos Vidro temperado	115,2kW	1 painel / 60 s
Lâmina de corte a quente	Corte de vidro	N/A	N/A
Separador de sílica e borracha	Silício	102 – 194 kW	200 – 1 000 kg / h
Mesa densimétrica	Prata Estanho Chumbo	24 kW	500 kg / h
Raio-X	Cobre	10 kW	500 kg / h
Câmara Térmica	Descolamento do vidro	50 kW	60 minutos por ciclo (8 000 kg / h)
Estufa	Descolamento do vidro	3,6 kW	60 minutos por ciclo (300 - 1000 kg / h)
Pinças	Vidro	N/A	N/A
Elevação por ventosas	Vidro	N/A	N/A
Elevação por ventosas	Vidro	N/A	N/A

CAPACIDADE PRODUTIVA DOS EQUIPAMENTOS (3)

Equipamento	Materiais separados	Potência	Capacidade de produção
Tapete de transporte	Transportes intermédios	1.5 kW	0.83 m/s
Tapete de transporte inclinado (customizado)	Transportes intermédios	0.4 - 22 kW	0.42 m/s

VALORIZAÇÃO DOS MATERIAIS

Valorização dos metais no estado puro

Material	Valor
Alumínio	2 397,71 € / t
Vidro temperado	41 390,00 € / t
EVA	1 143,88 € / t
Célula solar / silício	1 972,21 € / t
Tedlar	2,83 € / m ²
Estanho	24 849,85 € / t
Condutor interno — alumínio	2 397,71 € / t
Condutor interno – cobre	7 345,00 € / t
Prata	590 250,00 € / t
Chumbo	1 992,92 € / t

Valores médios estimados para a compra dos materiais recuperados

Material	Tipo de	Valor	
	processamento	[€/kg]	
Alumínio	Perfil	1,00	
Alumínio	Triturado	0,78	
Vidro	Triturado /inteiro	-	
EVA	Triturado	-	
Célula solar /	Triturado	-	
silício			
Tedlar	Triturado	-	
Estanho	Triturado	1,90	
Chumbo	Triturado	1,00	
Prata	Triturado	-	
Cobre	Triturado	2,90	
Cabos	Triturado	0,40	

VALORIZAÇÃO DOS MATERIAIS

Valores médios estimados para cada material

Material	Peso do estudo [kg]	Peso de 1 PF [kg]	Valor de cada material [€/kg]
Peso total	1 000,00	18,00	N/A
Alumínio	180,00	3,24	1,05
Vidro	700,00	12,60	0,00
EVA	51,00	0,92	0,00
Célula solar / sílicio	36,50	0,66	0,00
Tedlar	15,00	0,27	0,00
Cabos	10,00	0,18	0,90
Condutor interno - alumínio	5,30	0,10	0,90
Condutor interno - cobre	1,14	0,02	0,90
Prata	0,53	0,01	639,00
Outros metais (estanho, chumbo)	0,53	0,01	2,17
Total	1 000,00	18,00	644,92

COMPARAÇÃO DE CENÁRIOS TÉCNICO-ECONÓMICOS

Pressupostos para a comparação de cenários

- Foram considerados 16 cenários os cenários 1 a 8 utilizam os menores valores de capacidade
 de produção nas especificações dos diferentes equipamentos.
- Os cenários 9 a 16 utilizam os maiores valores do mesmo parâmetro.
- Para diferentes cenários pode-se observar, que por vezes, há repetição de alguns processos, isto deve-se ao objetivo de obter uma triagem mais limpa e mais eficaz ao longo de todo o processo.
- Os tempos de produção não estão afetados pelo manuseamento dos operadores.
- O tempo total de processamento das linhas está a ser considerado como o tempo de trabalho da linha em série (falta de informação de todos os tempos de processamento).

Pressupostos para a comparação de cenários (2)

- Como referência foi utilizada a capacidade de produção da mesa de desmantelamento (equipamento com menor capacidade de produção) para estimar a capacidade total da linha:
 - Se a mesa de desmantelamento, sem corte a quente, seria capaz de desmantelar 1 painel a cada 40 segundos, então em 1 hora seria capaz de desmantelar 90 painéis, se não existissem outras questões a considerar, como o manuseamento e a integração em linha com outros equipamentos.
 - Para comparação consideraram-se 1 e 90 painéis como os limites inferior e superior da capacidade de produção e, ainda um ponto intermédio de 45 painéis.
 - Avaliou-se a capacidade de produção total da linha em cada cenário para cada um destes pontos.

Pressupostos para a comparação de cenários (3)

- Foram calculados os seguintes indicadores de custo-benefício:
 - ROI: Retorno sobre o investimento return over investment é uma medida de desempenho financeiro que representa o ganho ou a perda com determinado Investimento.
 - PRI: prazo de retorno do investimento ou payback traduz o tempo previsto para a recuperação do investimento.

$$ROI = \frac{(Receita - Custo)}{Custo}$$

$$PRI = \frac{Investimento\ inicial}{Ganho\ no\ periodo}$$

Pressupostos para a comparação de cenários (4)

- Dependendo de:
 - equipamento escolhido e da sequência de equipamentos capacidade de produção da linha,
 - do custo total da linha quer a nível de investimento, quer a nível de operação, incluindo o consumo energético,

Existirão cenários com maior ou menor prazo de retorno de investimento e com maior ou menor retorno sobre o investimento

								Cen	ários							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
							Pro	postas	associ	adas						
	1	1	2	2	3	3	4	4	1	1	2	2	3	3	4	4
Subprocessos		ME	NOR C	APACIE	ADE P	RODUT	IVA			MA	AIOR CA	APACID	ADE P	RODUTI	VA	
Limpeza	Х	Χ	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х
Desmantelamento	X	Х			X	X	X	Х	Х	X			Х	Х	Х	Х
Desmantelamento com			Х	Х							Х	Х				
corte a quente			^	^							^	^				
Lâmina a quente							X	Х							Χ	X
Laminagem	Χ	Х	Х	X	X	X	X	Х	X	X	Х	Χ	X	X	X	X
Câmara térmica					X								X			
Estufa						X								Х		
Trituração	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Separação magnética de linha	Х		Х		Х		Х		Х		Х		Х		Х	
Separação magnética suspensa		Х		Х		Х		Х		Х		Х		Х		Х
Separação densimétrica	X	Х	Х	X	X	X	X	Х	Х	X	Х	Х	Х	Х	Х	Х
Separação por correntes <i>Foucault</i>	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Separação por Raio-X	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ	Х
Separação densimétrica	X	Х	Χ	X	Х	X	Х	Х	X	X	Х	Х	X	Х	Х	Х

				Cena	ários							
Parâmetros	1	2	3	4	5	6	7	8				
calculados	Propostas associadas											
			2	2	3	3						
Capacidade de produção [painéis / h]	21,6	16,5	19,3	15,1	20,8	0,9	10,4	9,0				
Investimento inicial [€]	239 763	200 284	1 143 562	1 104 083	443 763	211 814	240 470	200 992				
Custos mensais [€ / mês]	19 938	18 314	23 251	21 628	22 030	18 465	19 938	18 314				
Receitas mensais [€ / mês]	37 218	28 420	33 228	26 033	35 818	1 624	17 889	15 571				
ROI [%]	-86	-87	-97	-98	-92	-99	-93	-93				
PRI [anos]	1,2	1,7	9,6	20,9	2,7	-1,1	-9,8	-6,1				

				Cena	ários							
Parâmetros	9	10	11	12	13	14	15	16				
calculados	Propostas associadas											
			2	2	3	3						
Capacidade de produção [painéis / h]	48,8	47,3	38,4	37,5	44,9	1,0	14,1	14,1				
Investimento inicial [€]	239 763	200 287	1 143 562	1 104 083	443 763	211 814	240 471	200 992				
Custos mensais [€ / mês]	19 938	18 315	23 251	21 628	22 030	18 465	19 938	18 315				
Receitas mensais [€ / mês]	84 083	81 511	66 142	64 541	77 263	1 687	24 434	24 212				
ROI [%]	-68	-63	-94	-94	-83	-99	-91	-89				
PRI [anos]	0,3	0,3	2,2	2,1	0,7	-1,1	4,5	2,8				

Considerações para Análise Ambiental | Metodologia de avaliação do ciclo de vida

1ª ETAPA

Definição do objetivo e do âmbito Unidade Funcional

3ª ETAPA

Avaliação do Impacte ambiental

2ª ETAPA

Análise do Inventário

4ª ETAPA

Interpretação dos resultados

Melhorias Futuras

Metodologia de Avaliação do Ciclo de Vida

1ª ETAPA

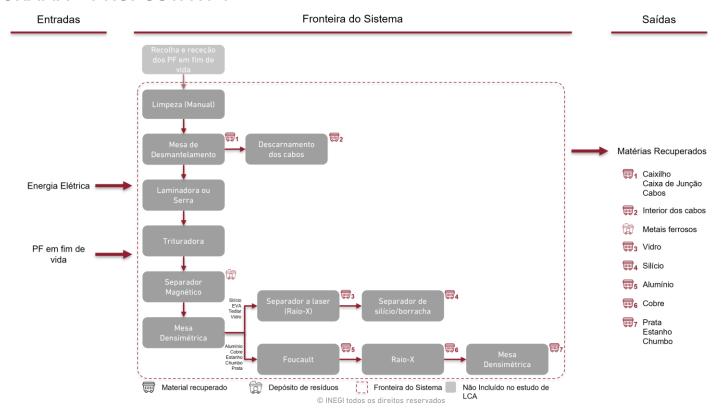
Definição do objetivo e do âmbito

Unidade Funcional

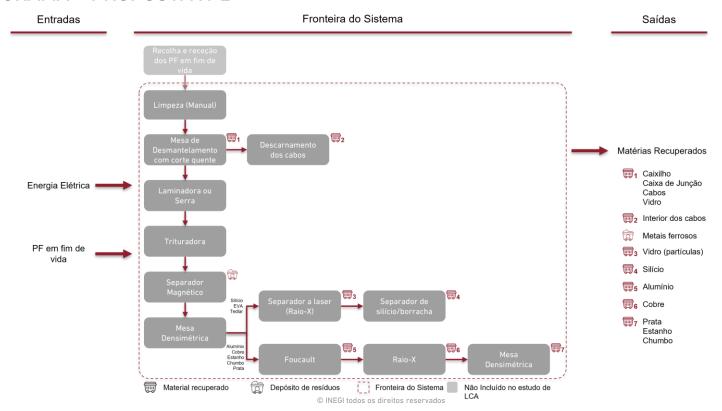
Objetivo: analisar a "Viabilidade de implementação de processos de reciclagem de painéis fotovoltaicos e reutilização de materiais resultantes em novos processos produtivos".

Realização de um estudo de avaliação de ciclo de vida de vida da(s) linha(s) de desmantelamento de painéis solares. O estudo consistiu em avaliar os impactos ambientais teóricos de cada proposta e entender as vantagens e/ou desvantagens das quatro propostas consideradas.

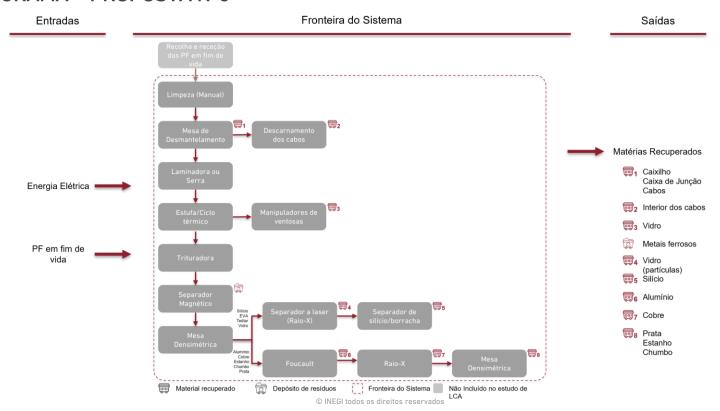
Unidade Funcional


Desmantelamento de um painel fotovoltaico para as 4 propostas diferentes.

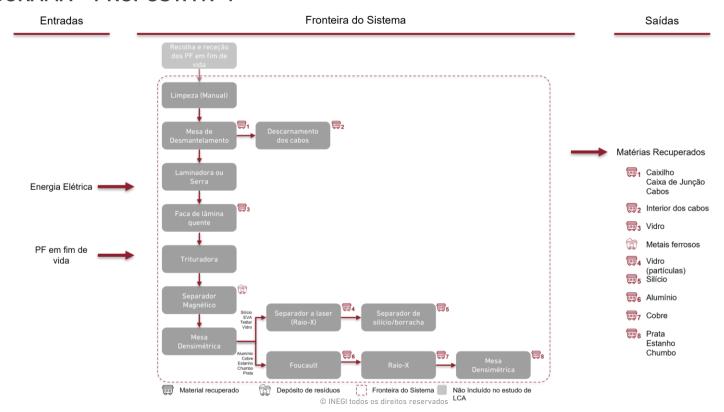
FLUXOGRAMA – PROPOSTA N°1



FLUXOGRAMA – PROPOSTA N°2



FLUXOGRAMA – PROPOSTA N°3



FLUXOGRAMA - PROPOSTA N°4

METODOLOGIA DE AVALIAÇÃO DO CICLO DE VIDA

2ª ETAPA

Análise do Inventário

Etapas	Cenário 1 [kWh]	Cenário 2 [kWh]	Cenário 9 [kWh]	Cenário 10 [kWh]
Limpeza (manual)	0,00	0,00	0,00	0,00
Mesa de Desmantelamento	0,40	0,40	0,40	0,40
Descarnamento de cabos	-	6,64E-04	-	3,32E-04
Descarnamento de cabos - linha	6,70E-02	-	6,70E-03	-
Laminagem	7,49E-03	7,49E-03	7,49E-03	7,49E-03
Trituração	5,42E-01	5,42E-01	2,71E-02	2,71E-02
Separação magnética de linha	2,70E-04	-	1,71E-04	-
Separação magnética suspensa	-	0,00E+00	-	0,00E+00
Separação densimétrica	7,04E-01	7,04E-01	7,04E-01	7,04E-01
Separação por raio-X	2,90E-01	2,90E-01	2,90E-01	2,90E-01
Separação de silício/borracha	1,80E+00	1,80E+00	3,60E-01	3,60E-01
Foucault	4,08E-02	4,08E-02	4,08E-03	4,08E-03
Separação por raio-X	7,96E-04	7,96E-04	7,96E-04	7,96E-04
Mesa densimétrica	9,21E-04	9,21E-04	9,21E-04	9,21E-04

ANÁLISE DE INVENTÁRIO - RESUMO

								Cena	ários							
Etapas		Propo	osta 1			Propo	osta 2			Prop	osta 3			Propo	osta 4	
	1	2	9	10	3	4	11	12	5	6	13	14	7	8	15	16
Consumo de energia total da linha [kWh]	3,85	3,79	1,79	1,79	4,05	3,98	2,44	2,43	52,52	6,06	50,92	4,51	2,46	2,46	0,92	0,91

A proposta **nº3 é a que apresenta maior consumo energético**, principalmente no caso onde se utiliza a câmara térmica (cenário 5 e 13).

O cenário 15 e 16 da proposta nº4 são os que apresentam menores consumos energéticos.

METODOLOGIA DE AVALIAÇÃO DO CICLO DE VIDA

3ª ETAPA

Avaliação do Impacte ambiental

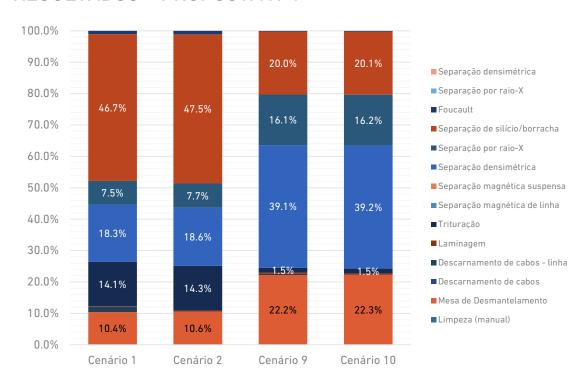
BASE DE DADOS E METODOLOGIA

A metodologia utilizada foi a IPCC 2013. A base de dados utilizada foi a do Ecolovent (versão 3.5, 2018).

Categoria de impacte

Potencial de aquecimento global | Global warming potential

- •As mudanças climáticas podem causar alterações adversas, altamente prejudicais para os ecossistemas, e que se encontram diretamente relacionadas com as emissões de gases com efeito de estufa (GEE) para a atmosfera.
- O resultado do impacte ambiental desta categoria é expresso em massa de dióxido de carbono equivalente (kg CO_2 eq.). A categoria do *Global Warming* considerada foi a de 100 anos.

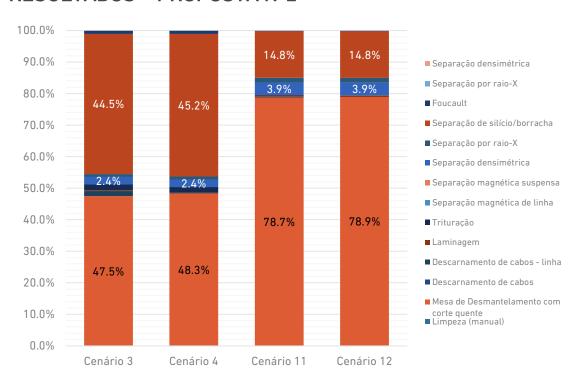


Etapas	Cenário 1 [kg CO2 eq.]	Cenário 2 [kg CO2 eq.]	Cenário 9 [kg CO2 eq.]	Cenário 10 [kg CO2 eq.]
Limpeza (manual)	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Mesa de Desmantelamento	1,57E-01	1,57E-01	1,57E-01	1,57E-01
Descarnamento de cabos	-	2,61E-04	-	1,30E-04
Descarnamento de cabos - linha	2,63E-02	-	2,63E-03	-
Laminagem	2,94E-03	2,94E-03	2,94E-03	2,94E-03
Trituração	2,13E-01	2,13E-01	1,07E-02	1,07E-02
Separação magnética de linha	1,06E-04	-	6,71E-05	-
Separação magnética suspensa	-	0,00E+00	-	0,00E+00
Separação densimétrica	2,77E-01	2,77E-01	2,77E-01	2,77E-01
Separação por raio-X	1,14E-01	1,14E-01	1,14E-01	1,14E-01
Separação de silício/borracha	7,07E-01	7,07E-01	1,41E-01	1,41E-01
Foucault	1,60E-02	1,60E-02	1,60E-03	1,60E-03
Separação por raio-X	3,13E-04	3,13E-04	3,13E-04	3,13E-04
Mesa densimétrica	3,62E-04	3,62E-04	3,62E-04	3,62E-04
TOTAL	1,51E+00	1,49E+00	7,05E-01	7,05E-01

ANÁLISE DE VIABILIDADE DE IMPLEMENTAÇÃO DE PROCESSOS DE RECICLAGEM DE PAINÉIS FOTOVOLTAICOS – ANÁLISE AMBIENTAL

ANÁLISE AMBIENTAL

- O Cenário 10 tem melhor desempenho ambiental, devido a seleção da maior capacidade de produção.
- O Cenário 1 tem pior desempenho ambiental: a separação de silício é responsável por cerca de 50% do impacte final.

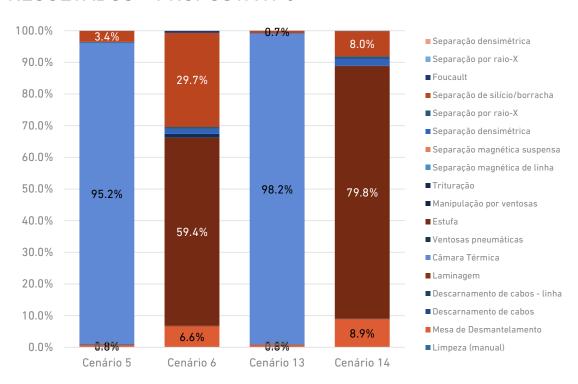


Etapas	Cenário 3 [kg CO2 eq.]	Cenário 4 [kg CO2 eq.]	Cenário 11 [kg CO2 eq.]	Cenário 12 [kg CO2 eq.]
Limpeza (manual)	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Mesa de Desmantelamento com corte quente	7,55E-01	7,55E-01	7,55E-01	7,55E-01
Descarnamento de cabos	-	2,61E-04	-	1,30E-04
Descarnamento de cabos - linha	2,63E-02	-	2,63E-03	-
Laminagem	3,89E-03	3,89E-03	3,89E-03	3,89E-03
Trituração	2,89E-02	2,89E-02	1,45E-03	1,45E-03
Separação magnética de linha	1,41E-04	-	7,99E-05	-
Separação magnética suspensa	-	0,00E+00	-	0,00E+00
Separação densimétrica	3,76E-02	3,76E-02	3,76E-02	3,76E-02
Separação por raio-X	1,46E-02	1,46E-02	1,46E-02	1,46E-02
Separação de silício/borracha	7,07E-01	7,07E-01	1,41E-01	1,41E-01
Foucault	1,60E-02	1,60E-02	1,60E-03	1,60E-03
Separação por raio-X	3,13E-04	3,13E-04	3,13E-04	3,13E-04
Mesa densimétrica	3,62E-04	3,62E-04	3,62E-04	3,62E-04
TOTAL	1,59E+00	1,56E+00	9,58E-01	9,56E-01

ANÁLISE DE VIABILIDADE DE IMPLEMENTAÇÃO DE PROCESSOS DE RECICLAGEM DE PAINÉIS FOTOVOLTAICOS – ANÁLISE AMBIENTAL

ANÁLISE AMBIENTAL

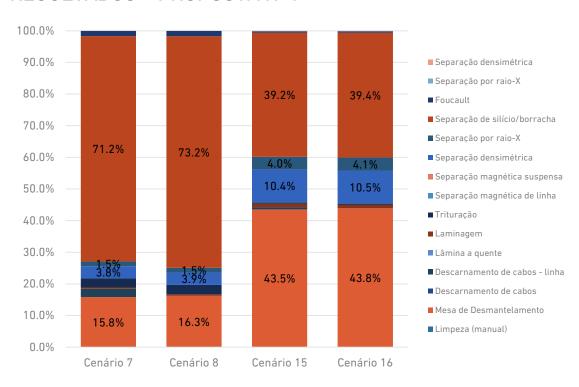
- A mesa densimétrica com corte quente tem elevada relevância para os resultados finais de cada categoria.
- O Cenário 12 tem melhor desempenho ambiental: a mesa densimétrica com corte quente é responsável por cerca de 80% do impacte final.
- O Cenário 3 tem pior desempenho ambiental.


Etapas	Cenário 5 [kg CO2 eq.]	Cenário 6 [kg CO2 eq.]	Cenário 13 [kg CO2 eq.]	Cenário 14 [kg CO2 eq.]
Limpeza (manual)	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Mesa de Desmantelamento	1,57E-01	1,57E-01	1,57E-01	1,57E-01
Descarnamento de cabos	-	2,61E-04	-	1,30E-04
Descarnamento de cabos - linha	2,63E-02	-	2,63E-03	-
Laminagem	2,94E-03	2,94E-03	2,94E-03	2,94E-03
Câmara Térmica	1,96E+01	-	1,96E+01	-
Estufa	-	1,41E+00	-	1,41E+00
Manipulação por ventosas	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Trituração	2,89E-02	2,89E-02	1,45E-03	1,45E-03
Separação magnética de linha	1,41E-04	-	8,88E-05	-
Separação magnética suspensa	-	0,00E+00	-	0,00E+00
Separação densimétrica	3,76E-02	3,76E-02	3,76E-02	3,76E-02
Separação por raio-X	1,46E-02	1,46E-02	1,46E-02	1,46E-02
Separação de silício/borracha	7,07E-01	7,07E-01	1,41E-01	1,41E-01
Foucault	1,60E-02	1,60E-02	1,60E-03	1,60E-03
Separação por raio-X	3,13E-04	3,13E-04	3,13E-04	3,13E-04
Mesa densimétrica	3,62E-04	3,62E-04	3,62E-04	3,62E-04
TOTAL	2,06E+01	2,38E+00	2,00E+01	1,77E+00

ANÁLISE DE VIABILIDADE DE IMPLEMENTAÇÃO DE PROCESSOS DE RECICLAGEM DE PAINÉIS FOTOVOLTAICOS – ANÁLISE AMBIENTAL

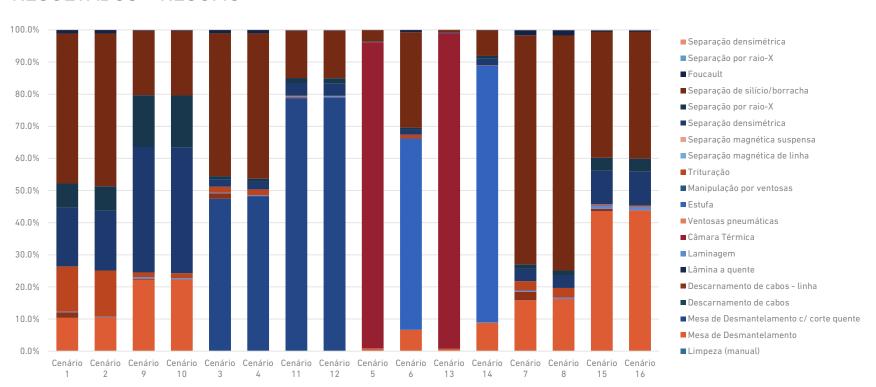
ANÁLISE AMBIENTAL

- A adição do ciclo térmico influencia significativamente os resultados finais.
- A câmara térmica apresenta pior desempenho comparativamente com a estufa.
- O Cenário 5 apresenta pior desempenho ambiental e o Cenário 14 apresenta o melhor desempenho ambiental.


Etapas	Cenário 7 [kg CO2 eq.]	Cenário 8 [kg CO2 eq.]	Cenário 15 [kg CO2 eq.]	Cenário 16 [kg CO2 eq.]
Limpeza (manual)	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Mesa de Desmantelamento	1,57E-01	1,57E-01	1,57E-01	1,57E-01
Descarnamento de cabos	-	2,61E-04	-	1,30E-04
Descarnamento de cabos - linha	2,63E-02	-	2,63E-03	-
Faca de lâmina quente	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Laminagem	3,89E-03	3,89E-03	3,89E-03	3,89E-03
Trituração	2,89E-02	2,89E-02	1,45E-03	1,45E-03
Separação magnética de linha	1,41E-04	-	8,88E-05	-
Separação magnética suspensa	-	0,00E+00	-	0,00E+00
Separação densimétrica	3,76E-02	3,76E-02	3,76E-02	3,76E-02
Separação por raio-X	1,46E-02	1,46E-02	1,46E-02	1,46E-02
Separação de silício/borracha	7,07E-01	7,07E-01	1,41E-01	1,41E-01
Foucault	1,60E-02	1,60E-02	1,60E-03	1,60E-03
Separação por raio-X	3,13E-04	3,13E-04	3,13E-04	3,13E-04
Mesa densimétrica	3,62E-04	3,62E-04	3,62E-04	3,62E-04
TOTAL	9,92E-01	9,66E-01	3,61E-01	3,58E-01

ANÁLISE DE VIABILIDADE DE IMPLEMENTAÇÃO DE PROCESSOS DE RECICLAGEM DE PAINÉIS FOTOVOLTAICOS - ANÁLISE AMBIENTAL

ANÁLISE AMBIENTAL


- O Cenário 16 apresenta melhor desempenho ambiental.
- O processo de lâmina quente não apresenta impacte significativo, pois seu consumo de energia é desprezável.

RESULTADOS – RESUMO

METODOLOGIA DE AVALIAÇÃO DO CICLO DE VIDA

4ª ETAPA

Interpretação dos resultados

Melhorias Futuras

								Cen	ários							
Global Warming	Proposta I				Proposta 2				Proposta 3			Proposta 4				
warming	1	2	9	10	3	4	11	12	5	6	13	14	7	8	15	16
[kg <i>CO</i> ₂ eq.]	1.51	1.49	0.71	0.71	1.59	1.56	0.96	0.96	20.64	2.38	20.01	1.77	0.99	0.97	0.36	0.36

Os cenários 15 e 16 da proposta nº4 apresentam o melhor desempenho ambiental.

O pior desempenho ambiental deve-se essencialmente a utilização do ciclo térmico realizado com a câmara térmica, referente aos cenários 5 e 13. Estes resultados podem alterar significativamente aquando de uma análise para uma maior quantidade de painéis, devido à capacidade de produção dos equipamentos.

3.

ANÁLISE DE REUTILIZAÇÃO E INCORPORAÇÃO DE MATERIAIS RESULTANTES DA RECICLAGEM

PROJETO CABRISS

Materiais secundários de resíduos fotovoltaicos complexos

- Empresas gestoras de resíduos (metais: alumínio, cobre)
- Produtores (fabrico) de vidro
- Recicladores de vidro
- Refinarias
- Estações de tratamento de águas residuais
- Indústria de papel (PAC)
- Fabricantes de PF
- Fornecedores de materiais: silício desmetalizado, índio / compostos, prata / compostos

Silício de sobras de produção

- Fabricantes de PF
- Indústria dos refratários
- Indústria de cerâmicas avançada
- Indústria de nitretos de silício
- Indústria de silicones
- Indústria de aditivos para ligas
- Explosivos
- Baterias

Silício reciclado purificado de resíduos de PF

- Fabricantes de PF (produção de lingotes e pastilhas)
- · Para grau inferior purezas, mercados para cerâmicas avançadas e metais (ligas)

Prata recuperada dos resíduos de painéis

- Indústria solar fotovoltaica
- Indústria microeletrónica
- Aviação
- Indústria automóvel
- Produtores de Eletrónica impressa
- Produtores de monitores, sensores. filtros e OLEDs

Índio recuperado dos painéis de 2ª geração

• Utilizado na produção de alvos de pulverização de Índio (para utilização em ecrãs planos)

Indústria Transformadora

- Fabricação de vidro
- Cristalaria
- Cerâmica
- Química
- Farmacêutica
- Semicondutores

Energia

- Fabrico de painéis fotovoltaicos
- Fabrico de baterias lítio

Operadores de tratamento de resíduos

Aviação

Automóvel

Eletrónica

Objetivo: analisar o mercado das empresas portuguesas e o possível interesse em incorporar os materiais provenientes do desmantelamento dos painéis fotovoltaicos nos processos produtivos. Avaliar as cadeias de valor com potencial interesse de incorporação

Lista de Materiais

#	Material
1	Perfil de alumínio (caixilho) Alumínio triturado
2	Vidro temperado (triturado ou inteiro)
3	EVA (acetato-vinilo de etileno) triturado
4	Silício triturado
5	Tedlar triturado
6	Cabos (triturados ou inteiros)
7	Cobre triturado (resultado dos condutores internos)
8	Prata triturada
9	Estanho, chumbo, outros materiais triturados

Pesquisa em base de dados nacionais: o Insight View, SICAE e o Kompass Portugal, considerando CAE, dimensão e localização da empresa.

		CAE	
Material	Designação	Específico	Designação
	Indústrias transformadoras	25120	Fabricação de portas, janelas e elementos similares em metal
	Indústrias transformadoras	24420	Obtenção e primeira transformação de alumínio
1- Alumínio (perfil ou	Indústrias transformadoras	24540	Fundição de outros metais não ferrosos
triturado)	Captação, tratamento e distribuição de água; saneamento, gestão de resíduos e despoluição	38321	Valorização de resíduos metálicos
	Comércio por grosso e a retalho; reparação de veículos automóveis e motociclos	46690	Comércio por grosso de outras máquinas e equipamentos
2- Vidro temperado	Indústrias transformadoras	23120	Moldagem e transformação de vidro plano
(triturado ou inteiro)	Indústrias transformadoras	23190	Fabricação e transformação de outro vidro (inclui vidro técnico)
	Indústrias transformadoras	13962	Fabricação de têxteis para uso técnico e industrial
3- EVA (acetato-vinilo	Indústrias transformadoras	22210	Fabricação de chapas, folhas, tubos e perfis de plástico
de etileno) (triturado)	Comércio por grosso e a retalho; reparação de veículos automóveis e motociclos	46494	Outro comércio por grosso de bens de consumo
4- Silício (triturado)	Indústrias transformadoras	23992	Fabricação de outros produtos minerais não metálicos diversos

Pesquisa em base de dados nacionais: o Insight View, SICAE e o Kompass Portugal, considerando CAE, dimensão e localização da empresa (cont).

	CAE						
Material	Designação	Específico	Designação				
	Indústrias transformadoras	22210	Fabricação de chapas, folhas, tubos e perfis de plástico				
5- Tedlar (triturado)	Comércio por grosso e a retalho; reparação de veículos automóveis e motociclos	46494	Outro comércio por grosso de bens de consumo				
6- Cabos (triturados ou inteiros) Indústrias transformadoras		27320	Fabricação de outros fios e cabos elétricos e eletrónicos				
	Indústrias extrativas	7290	Extração e preparação de outros minérios metálicos não ferrosos				
	Indústrias transformadoras	24440	Obtenção e primeira transformação de cobre				
		25940	Fabricação de rebites, parafusos e porcas				
7- Cobre (triturado)		25992	Fabricação de outros produtos metálicos diversos				
		28992	Fabricação de outras máquinas diversas para uso específico				
	Captação, tratamento e distribuição de água; saneamento, gestão de resíduos e despoluição	38321	Valorização de resíduos metálicos				
	Indústrias transformadoras	24410	Obtenção e primeira transformação de metais preciosos				
8- Prata (triturada)	Indústrias transformadoras	32122	Fabricação de artigos de joalharia e de outros artigos de ourivesaria				
O Fatanha ahumba	Indústrias transformadoras	24430	Obtenção e primeira transformação de chumbo, zinco e estanho				
9- Estanho, chumbo (triturados)	Indústrias transformadoras	25992	Fabricação de outros produtos metálicos diversos				
(ti itul duos)	Indústrias extrativas	7290	Extração e preparação de outros minérios metálicos não ferrosos				

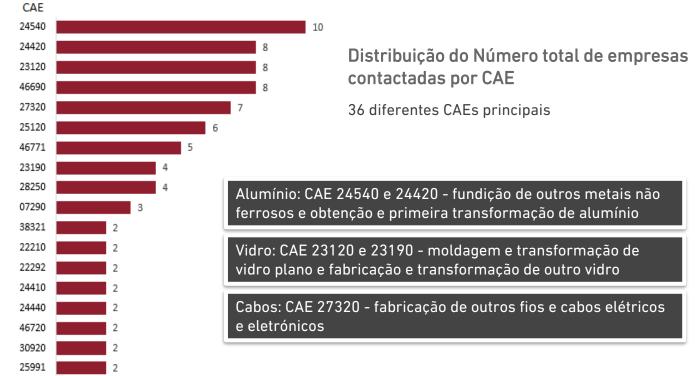
Material

1- Alumínio

Setores de mercado

	Produção e comercialização de portões, portas, persianas, grades em alumínio	Extrusão, produção de perfis de alumínio e tratamento de superfícies	Valorização de resíduos metálicos		
	Fabricação de sistemas de janelas de metal	Extrusão e transformação de alumínio	Reciclagem de metais, separação e		
	Fabricação de aço para construção e metalomecânica	Extrusão, tratamento de superfície e comercialização de perfis de alumínio e acessórios	valorização em materiais ferrosos e não ferrosos enviados para fundições da especialidade		
	Construção metálica, fachadas de alumínio Fabricação e comercialização de portões e	Mineração- Extrusão de alumínio, tratamento e	Comércio por grosso de sucatas e de desperdícios metálicos		
	janelas de alumínio	lacagem de perfis Reciclagem, valorização e comércio de	Comercialização e gestão de resíduos		
	Fabricação e comercialização de portões e janelas de aço e alumínio	resíduos e desperdícios metálicos ferrosos e	Fundição injetada e mecanização de peças		
	Fabricação de aparelhos elétricos e eletrónicos	Comércio de sucatas, desmantelamento doméstico, industrial e recolha de resíduos	Produção de ligas e lingotes		
	Comércio por grosso de outras máquinas e equipamentos	Comércio por grosso de produtos químicos, cerâmicos, tintas, plástico, metalurgia,	Fabricação de ligas de bronze e fundição contínua		
	Fabricação de equipamentos médicos	argamassas e alimentação animal	Produção de peças através da fundição de		
	Comércio por grosso de outras máquinas e equipamentos	Fabricação de semicondutores de energia renovável	alumínio Produção de peças em alumínio por fundição		
	Fabricação de aparelhos elétricos e eletrónicos	Indústria transformadora Fundição de outros metais não ferrosos	injetada a incorporar em produtos próprios e em subcontratação		
ı	Fabricação de máquinas de automação	Recicladora de metais não ferrosos para	Fundição injetada		
	, , , , , , , , , , , , , , , , , , , ,	produção de alumínio em lingotes e em estado	Fabricação de peças fundidas por gravidade em alumínio		
		líquido Fabricação de máquinas de automação	6		
			i —		

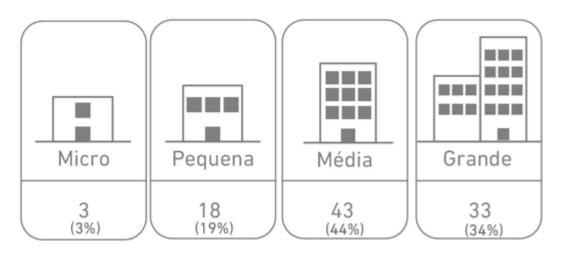
Outros



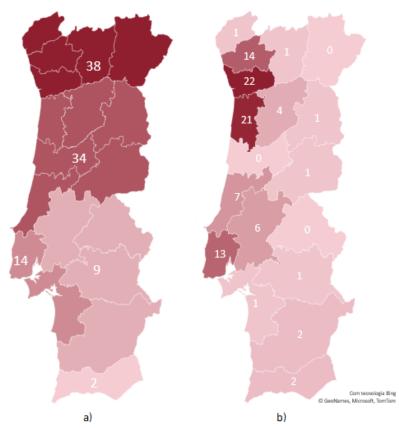
METODOLOGIA

Foram contactadas 97 empresas (por e-mail, telefone e formulário), de acordo com a tipologia de material

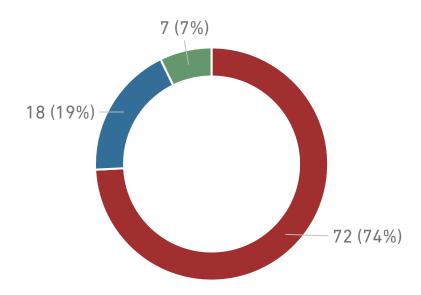
de potencial interesse



Distribuição do Número total de empresas contactadas por dimensão



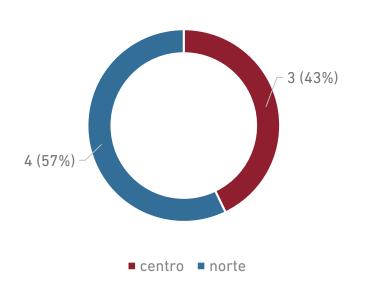
Distribuição do Número total de empresas contactadas por localização

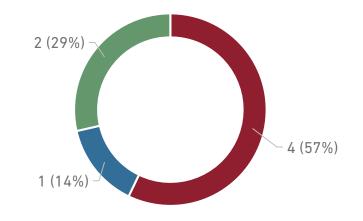


MERCADO POTENCIAL: RESULTADOS

Resultados dos inquéritos

■ Sem resposta ■ Resposta sem interesse ■ Resposta com interesse





MERCADO POTENCIAL: RESULTADOS

Resultados dos inquéritos

Distribuição de respostas de empresas que revelaram ter interesse

■ Dimensão grande ■ Dimensão media ■ Dimensão pequena

Resultados Positivos

CAE	Setor de atividade	Materiais com potencial interesse	Processos Produtivos	Características dos materiais	Quantidades de materiais	Preço de compra / material atual
46771	Comercialização e gestão de resíduos metálicos	1-Alumínio 6- Cabos (triturados ou inteiros) 7- Cobre triturado 8-Prata 9- Estanho e chumbo triturado	Revenda a fundições de metais.	Ter quantidade de impurezas reduzidas	Sem mínimo exigido	Alumínio: 1500-2000 €/ton Cabos: 1500-4000 €/ton Cobre triturado: 6000- 7500 €/ton Prata: 400-500 €/Kg Estanho: 5000-15000 €/ton Chumbo: 1000-1700 €/ton
46771	Reciclagem, valorização e comércio de resíduos e desperdícios metálicos ferrosos e não ferrosos	1- Perfis de alumínio 7- Cabos inteiros 9- Estanho e chumbo triturado	Revenda a fundições, extrusoras, indústria de produção de alumínio, cobre, etc ou com potencial para operadores de resíduos devidamente licenciados.	Materiais devem estar separados por tipologia, sem impurezas ou contaminação (>90- 98%)	Sem mínimo exigido	-

Resultados Positivos (cont.)

CAE	Setor de atividade	Materiais com potencial interesse	Processos Produtivos	Características dos materiais	Quantidades de materiais	Preço de compra / material atual
46762	Produtos e equipamentos para a preparação de superfícies por jateamento	1- Alumínio2- Vidro temperado triturado4- Silício triturado6- Cobre triturado	Processos de jateamento Utilizado em operações de limpeza sensíveis seco ou húmido, em equipamentos de pressão ou sucção.	Forma angular Dimensões entre 40-800 µm Densidade ~2.5g/cm ³ Dureza ~ 6 mohs	Sacos de 25 Kg Paletes de 1200 Kg	Granalha de vidro ronda os 0.30 € /Kg
28992	Concebe, produz e monta equipamentos	1-Alumínio 6-Cobre	Consomem uma pequena quantidade de alumínio na desoxidação das ligas em cada vazamento.	Alumínio: este material deve estar devidamente limpo de impurezas a fim de não contaminar as ligas em questão Cobre: neecssário saber a composição química correta, que afeta a composição química do aço a produzir	Alumínio: 200 Kg/ano Cobre: 3000 Kg/ano	-

Resultados Positivos (cont.)

CAE	Setor de atividade	Materiais com potencial interesse	Processos Produtivos	Características dos materiais	Quantidades de materiais	Preço de compra / material atual
38321	Reciclagem de metais ferrosos e não-ferrosos	1- Perfil alumínio6- Cobre triturado7- Cabos9- Chumbo	-	Perfil alumínio: limpo Cabos: sujeito a análise de percentagens Cobre triturado: de primeira sem qualquer contaminação Chumbo: limpo	-	Perfil alumínio: 1500 €/ton Cabos: 1400 €/ton Cobre triturado: 7300 €/ton Chumbo: 1400 €/ton
24520	Fundição de ferro e aço	4- Silício triturado 6- Cobre triturado	Produção de ligas ferrosas Fusão.	Composição química Nível de pureza	1000 Kg	-
46900	Comércio e Indústria de Espumas para Calçado	3- EVA	Venda de material em rolo e corte em peças.	Densidade: 79 kg/m³ Composição: 45% EVA virgem; 45% PE reciclado; 10% outros.	-	-

NOTAS FINAIS

Análise Técnico-Económica

- Verifica-se benefício de uma etapa prévia de limpeza simples dos painéis solares, de forma a retirar impurezas que possam danificar os materiais nos subprocessos de separação.
- Os valores de receita mais aproximados por cenário, bem como o setor de destino mais apropriado, estarão diretamente relacionados com o nível de pureza dos materiais recuperados e/ou o envio de amostras para potenciais clientes.
- Não existindo interesse na aquisição do vidro temperado não triturado pode ser considerada a eliminação da etapa de corte / laminagem nas propostas e a aquisição de um equipamento de trituração com a capacidade de resposta de processamento do vidro temperado.
- Relativamente à proposta n°3 deve considerar-se que a etapa de trituração ocorreria apenas após o ciclo térmico.

Análise Técnico-Económica (cont.)

- Existem 4 cenários sem viabilidade económica para as empresas, já que têm uma capacidade de produção muito baixa, um PRI negativo e os custos mensais são sempre superiores às receitas mensais: cenários 6 e 14 - Proposta nº 3, 7 e 8 - Proposta nº 4 e 14.
- Ainda pela negativa, destaca-se os cenários 3 e 4 Proposta nº2, já que o prazo de retorno de investimento é demasiado longo.
- Pela positiva, destaca-se os cenários 1 e 2 Proposta nº1: investimento inicial e capacidade de produção são semelhantes entre si, ambos têm um prazo de retorno do investimento reduzido.
- Por último, os cenários 9 e 10 Proposta nº1, cujo investimento inicial é bastante semelhante entre si e o cenário 13 Proposta nº 3, cujo investimento inicial é significativamente superior aos dois primeiros: Todos têm uma capacidade de produção semelhante entre si, e significativamente mais elevada que os cenários 1 e 2, e um prazo de retorno do investimento abaixo de 1 ano.

Análise Ambiental

- A proposta nº4 apresenta melhor desempenho ambiental relativamente às outras propostas, contudo apenas os cenários 15 e 16 apresentam o melhor desempenho ambiental relativamente aos restantes cenários.
- Os cenários 5 e 13 referentes à proposta nº3 são os que apresentam pior desempenho ambiental devendo-se essencialmente ao uso da câmara térmica.
- Em cada proposta, os melhores cenários são os seguintes:
 - Na proposta nº1, o cenário 10;
 - Na proposta n°2, o cenário 12;
 - Na proposta n°3, o cenário 14;
 - Na proposta nº4, o cenário 16.
- Quando se considera a maior capacidade de produção dos equipamentos, o descarnamento de cabos isolado da linha e a separação magnética em suspensão, os resultados apresentam melhor desempenho ambiental.
- A adição do ciclo térmico à linha de desmantelamento e a linha de separação de silício/borracha de sílica são críticos para o desempenho ambiental.

Análise Completa

 Na conjugação da análise técnico-económica e ambiental, todos os cenários analisados relativos à proposta nº1 evidenciam-se como as melhores soluções a prosseguir para uma avaliação mais aprofundada e para uma fase de teste à escala industrial.

CONCLUSÕES - ANÁLISE DE REUTILIZAÇÃO E INCORPORAÇÃO DE MATERIAIS RESULTANTES DA RECICLAGEM

- Foram contactadas 97 empresas nacionais, de acordo com o seu CAE, dimensão e localização.
- Das respostas de empresas com interesse na valorização dos materiais recebidas (7):
 - 3 localizam-se na região centro (43 %), nos distritos de Leiria, Santarém e Aveiro,
 - e 4 estão sediadas na região norte (57 %), mais especificamente 3 no Porto e 1 em Braga.
- O número de respostas obtidas ficou aquém do esperado, o que revela que este tema ainda é desconhecido para o contexto nacional.
- Poderá existir mercado nacional para o silício e o vidro temperado.
- Futuramente, seria interessante poderem ser analisadas simbioses industriais, com base no conhecimento de intervenientes identificados da cadeia de valor

MAIS DE 35 ANOS A CONVERTER CONHECIMENTO **EM VALOR**

OBRIGADO

Viviana Correia Pinto Responsável do Grupo de Economia Circular Unidade de Engenharia e Gestão Industrial

vpinto@ineqi.up.pt +351 22 957 87 10 / +351 92 519 66 94

INSTITUTO DE CIÊNCIA E INOVAÇÃO EM ENGENHARIA MECÂNICA E ENGENHARIA INDUSTRIAL

www.inegi.pt

Consultora

Luiz Rodrigues

Consultora

Consultor / Investigador

© INEGI todos os direitos reservados